e+msa EnergieBeratungs GmbH Feldkirchner Straße 102 9020 Klagenfurt am Wörthersee 0463 418200 info@emsa.at

ENERGIEAUSWEIS

Ist-Zustand

Kindergarten - Gemeinde Krumpendorf "Bestand 2025; KG 72133 Krumpendorf; Parzelle .35/1"

> Gemeinde Krumpendorf am Wörthersee Hauptstraße 145 9201 Krumpendorf

Energieausweis für Nicht-Wohngebäude

BEZEICHNUNG Kindergarten - Gemeinde Krumpendorf

"Bestand 2025; KG 72133 Krumpendorf;

Gebäude(-teil) Earzellog 35/1"

Nutzungsprofil Bildungseinrichtungen

Straße Bad Stich Straße Nord 15

PLZ/Ort 9201 Krumpendorf

Grundstücksnr. .35/1

Umsetzungsstand Ist-Zustand

Baujahr 1930

Letzte Veränderung

Katastralgemeinde Krumpendorf

KG-Nr. 72133

Seehöhe 450 m

HWB_{Ref}: Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

WWWB: Der **Warmwasserwärmebedarf** ist in Abhängigkeit der Gebäudekategorie als flächenbezogener Defaultwert festgelegt.

HEB: Beim Heizenergiebedarf werden zusätzlich zum Heiz- und Warmwasserwärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondere die Verluste der Wärmebereitstellung, der Wärmeverteilung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

KB: Der **Kühlbedarf** ist jene Wärmemenge, welche aus den Räumen abgeführt werden muss, um unter der Solltemperatur zu bleiben. Er errechnet sich aus den nicht nutzbaren inneren und solaren Gewinnen.

BefEB: Beim **Befeuchtungsenergiebedarf** wird der allfällige Energiebedarf zur Befeuchtung dargestellt.

KEB: Beim **Kühlenergiebedarf** werden zusätzlich zum Kühlbedarf die Verluste des Kühlsystems und der Kältebereitstellung berücksichtigt.

RK: Das **Referenzklima** ist ein virtuelles Klima. Es dient zur Ermittlung von Energiekennzahlen.

BeIEB: der **Beleuchtungsenergiebedarf** ist als flächenbezogener Defaultwert festgelegt und entspricht dem Energiebedarf zur nutzungsgerechten Beleuchtung.

BSB: Der **Betriebsstrombedarf** ist als flächenbezogener Defaultwert festgelegt und entspricht der Hälfte der mittleren inneren Lasten.

EEB: Der Endenergiebedarf umfasst zusätzlich zum Heizenergiebedarf den jeweils allfälligen Betriebsstrombedarf, Kühlenergiebedarf und Beleuchtungsenergiebedarf, abzüglich allfälliger Endenergieerträge und zuzüglich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss (Lieferenergiebedarf).

feee: Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem Referenz-Endenergiebedarf (Anforderung 2007).

PEB: Der **Primärenergiebedarf** ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren (PEB _{ern.}) und einen nicht erneuerbaren (PEB _{n.ern.}) Anteil auf.

CO2eq: Gesamte dem Endenergiebedarf zuzurechnenden **äquivalenten** Kohlendioxidemissionen (Treibhausgase), einschließlich jener für Vorketten.

SK: Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU vom 19. Mai 2010 über die Gesamtenergieeffizienz von Gebäuden bzw. 2018/844/EU vom 30. Mai 2018 und des Energieausweis-Vorlage-Gesetzes (EAVG). Der Ermittlungszeitraum für die Konversionsfaktoren für Primärenergie und Kohlendioxidemissionen ist für Strom: 2018-01 – 2021-12, und es wurden übliche Allokationsregeln unterstellt.

Energieausweis für Nicht-Wohngebäude

GEBÄUDEKENNDATEN	EA-Art:
------------------	---------

Brutto-Grundfläche (BGF)	500,8 m ²	Heiztage	365 d	Art der Lüftung	Fensterlüftung
Bezugsfläche (BF)	400,7 m ²	Heizgradtage	3.938 Kd	Solarthermie	- m²
Brutto-Volumen (V _B)	1.808,0 m ³	Klimaregion	SB	Photovoltaik	- kWp
Gebäude-Hüllfläche (A)	1.129,2 m ²	Norm-Außentemperatur	-13,0 °C	Stromspeicher	-
Kompaktheit (A/V)	0,62 1/m	Soll-Innentemperatur	22,0 °C	WW-WB-System (primär)	
charakteristische Länge (lc)	1,60 m	mittlerer U-Wert	1,06 W/m ² K	WW-WB-System (sekundär,	opt.)
Teil-BGF	- m²	LEK _T -Wert	88,09	RH-WB-System (primär)	
Teil-BF	- m²	Bauweise	schwer	RH-WB-System (sekundär,	opt.)
Teil-V _B	- m³			Kältebereitstellungs-System	

WÄRME- UND ENERGIEBEDARF (Referenzklima)

Ergebnisse

Referenz-Heizwärmebedarf $HWB_{Ref,RK} = 202,9 \text{ kWh/m}^2\text{a}$ $KB_{RK}^* = 0.0 \text{ kWh/m}^3 \text{a}$ Außeninduzierter Kühlbedarf Endenergiebedarf $EEB_{RK} = 239,9 \text{ kWh/m}^2\text{a}$

Gesamtenergieeffizienz-Faktor $f_{GEE,RK} = 2,41$

Heizwärmebedarf $HWB_{RK} = 207.8 \text{ kWh/m}^2\text{a}$ Primärenergiebedarf PEB_{HEB+BelEB,n.ern.,RK} = 106,9 kWh/m²a n.ern. für RH+WW+Bel

WÄRME- UND ENERGIEBEDARF (Standortklima)

Referenz-Heizwärmebedarf	$Q_{h,Ref,SK} =$	123.947 kWh/a	HWB $_{Ref,SK} = 247,5 \text{ kWh/m}^2\text{a}$
Heizwärmebedarf	$Q_{h,SK} =$	126.852 kWh/a	HWB $_{SK}$ = 253,3 kWh/m ² a
Warmwasserwärmebedarf	Q _{tw} =	1.347 kWh/a	WWWB = 2,7 kWh/m²a
Heizenergiebedarf	Q _{HEB,SK} =	132.545 kWh/a	$HEB_{SK} = 264,7 \text{ kWh/m}^2\text{a}$
Energieaufwandszahl Warmwasser			$e_{AWZ,WW} = 3,74$
Energieaufwandszahl Raumheizung			$e_{AWZ,RH} = 1,03$
Energieaufwandszahl Heizen			e _{AWZ,H} = 1,06
Betriebsstrombedarf	Q _{BSB} =	1.053 kWh/a	$BSB = 2,1 \text{ kWh/m}^2\text{a}$
Kühlbedarf	Q _{KB,SK} =	0 kWh/a	$KB_{SK} = 0.0 \text{ kWh/m}^2\text{a}$
Kühlenergiebedarf	Q _{KEB,SK} =	- kWh/a	$KEB_{SK} = - kWh/m^2a$
Energieaufwandszahl Kühlen			$e_{AWZ,K} = 0,00$
Befeuchtungsenergiebedarf	$Q_{BefEB,SK} =$	- kWh/a	BefEB _{SK} = $- kWh/m^2a$
Beleuchtungsenergiebedarf	Q _{BelEB} =	9.936 kWh/a	BelEB = 19,8 kWh/m²a
Endenergiebedarf	Q _{EEB,SK} =	143.534 kWh/a	$EEB_{SK} = 286,6 \text{ kWh/m}^2\text{a}$
Primärenergiebedarf	Q _{PEB,SK} =	247.528 kWh/a	$PEB_{SK} = 494,2 \text{ kWh/m}^2 \text{a}$
Primärenergiebedarf nicht erneuerbar	$Q_{PEBn.ern.,SK} =$	63.739 kWh/a	$PEB_{n.ern.,SK} = 127,3 \text{ kWh/m}^2 \text{a}$
Primärenergiebedarf erneuerbar	$Q_{PEBern.,SK} =$	183.788 kWh/a	$PEB_{ern.,SK} = 367,0 \text{ kWh/m}^2 \text{a}$
äquivalente Kohlendioxidemissionen	$Q_{CO2eq,SK} =$	10.042 kg/a	$CO_{2eq,SK} = 20,1 \text{ kg/m}^2\text{a}$
Gesamtenergieeffizienz-Faktor			$f_{GEE,SK} = 2,44$
Photovoltaik-Export	$Q_{PVE,SK} =$	- kWh/a	$PVE_{EXPORT,SK} = - kWh/m^2a$

ERSTELLT

GWR-Zahl ErstellerIn Ausstellungsdatum 02.07.2025

Unterschrift Gültigkeitsdatum 01.07.2035

Geschäftszahl

e+msa EnergieBeratungs GmbH Feldkirchner Straße 102, 9020 Klagenfurt am

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

Datenblatt GEQ Kindergarten - Gemeinde Krumpendorf

Anzeige in Druckwerken und elektronischen Medien

HWB_{Ref,SK} 247 f_{GEE,SK} 2,44

Gebäudedaten

Brutto-Grundfläche BGF 501 m 2 charakteristische Länge I $_{\rm c}$ 1,60 m Konditioniertes Brutto-Volumen 1.808 m 3 Kompaktheit A $_{\rm B}$ / V $_{\rm B}$ 0,62 m $^{-1}$

Gebäudehüllfläche A_B 1.129 m²

Ermittlung der Eingabedaten

Geometrische Daten: It. Aufmaß, -, Plannr. -Bauphysikalische Daten: It. Defautwerttabelle, -

Haustechnik Daten: It. Bestand, -

Haustechniksystem

Raumheizung: Nah-/Fernwärme (Fernwärme aus Heizwerk (erneuerbar))

Warmwasser Stromheizung direkt (Strom)

Lüftung: Fensterlüftung

Berechnungsgrundlagen

Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH - www.geq.at
Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6-1 / Unkonditionierte
Gebäudeteile vereinfacht nach ON B 8110-6-1 / Wärmebrücken pauschal nach ON B 8110-6-1 / Verschattung vereinfacht nach ON B 8110-6-1

Verwendete Normen und Richtlinien:

ON B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6-1 / ON H 5056-1 / ON H 5057-1 / ON H 5058-1 / ON H 5059-1 / ON EN ISO 13790 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / OIB-Richtlinie 6 Ausgabe: Mai 2023

Anmerkung

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

ENERGIEBERATUNGS GmbH Feldkirchner Straße 102 • A-9020 Klagenfurt Tel.: 0463 / 418 200 • info@emsa.at • www.emsa.at

Projektanmerkungen Kindergarten - Gemeinde Krumpendorf

Allgemein

Bestandsobjekt, Baujahr 1930

Berechnungsgrundlage:

Planverfasser: It. Aufmaß

Baupolizeilich geprüft am: ohne Hinweis

Angaben zur Haustechnik und Beheizung: It. Bestand

Seehöhe It. Kagis

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU vom 19. Mai 2010 über die Gesamtenergieeffizienz von Gebäuden bzw. 2018/844/EU vom 30. Mai 2018 und des Energieausweis-Vorlage-Gesetzes (EAVG). Der Ermittlungszeitraum für die Konversionsfaktoren für Primärenergie und Kohlendioxidemissionen ist für Strom: 2018-01 – 2021-12, und es wurden übliche Allokationsregeln unterstellt.

Bauteile

Bestandsobjekt, Baujahr 1930

Die U-Werte nicht spezifizierter Bestandsbauteile sind an die Default-Werte It. OIB RL 6 des o.a. Baujahres angeglichen.

Die Bauteilqualität kann aufgrund dieser konservativen Annahme zum IST Stand abweichen.

Fenster

Bestandsobjekt, Baujahr 1930

Normfenster Uw 1,31 W/m²K

Die Uw & Ud - Werte nicht spezifizierter Bestandsfenster und - türen sind an die Default-Werte It. OIB RL 6 des o.a. Baujahres angeglichen

Glas-, Rahmen- und Abstandshalterqualität in Absprache mit Bauherrn.

kleinere Fenster oder Fenster mit Pfosten oder Stulpe sind im Uw schlechter als das Normfenster!

Projektanmerkungen Kindergarten - Gemeinde Krumpendorf

Geometrie

Bestandsobjekt, Baujahr 1930

Geometrieeingaben It. vorliegenden Plan erfolgt

Haustechnik

Bestandsobjekt, Baujahr 1930

Erzeugung der Raumwärme (HWB) durch Fernwärme (erneuerbare Wärme). Erzeugung des Warmwassers (WWB) durch Strom

Verbesserungsvorschläge

Bestandsobjekt, Baujahr 1930;

Die nachfolgenden Sanierungsempfehlungen sind auf Grund unserer sachverständigenden Begutachtung aufgelistet.

Für großteils der angeführten Positionen, werden vom Land Kärnten und von der Bundesregierung (Kommunalkredit Public Consulting KPC) im Zuge von Sanierungsmaßnahmen, Förderungen ausgeschüttet. Wir, die e+msa EnergieBeratungs GmbH (www.emsa.at), können Ihnen bei der Abwicklung vom Förderungsvorhaben (Sanierungscoach) und bei der exakten Definition, als vom Land Kärnten zertifizierter Netzwerk-Energieberater (netEB), behilflich sein.

Sanierungsempfehlungen:

Beschrieben sind Bauteile, die der derzeit gültigen OIB Richtline 6 nicht mehr entsprechen sowie haustechnische Anlagen, die nicht auf der Nutzung erneuerbarer Energie beruhen. Die Wirtschaftlichkeit muß gesondert bewertet werden!

- ° Dämmen der Außenwände
- ° Dämmen der Kellerdecke
- ° Dämmen der Decke zu Dachraum
- ° Dämmen der Dachschräge
- ° Fenstertausch
- ° Außentürentausch
- ° Nutzung der Solarenergie für die WWB (Warmwasser)
- ° Nutzung der Sonnenenergie zur Eigenstromerzeugung (Photovoltaikanlage)
- ° Einbau eines Stromspeichers zur Steigerung der Eigenstromnutzung
- ° Dämmung der Heizungs- und Warmwasserleitungen in nicht konditionierten (unbeheizten) Räumen
- ° Einbau von leistungsoptimierten und gesteuerten Heizungspumpen

Projektanmerkungen Kindergarten - Gemeinde Krumpendorf

° Optimierung der Betriebszeiten

Heizlast Abschätzung Kindergarten - Gemeinde Krumpendorf

Abschätzung der Gebäude-Heizlast auf Basis der Energieausweis-Berechnung

Berechnungsblatt

Bauherr		Planer / Baufirma / Hausve	rwaltung
Gemeinde Krumpendorf am Wörthe	ersee	Gemeinde Krumpendorf am	Wörthersee
Hauptstraße 145		Hauptstraße 145	
9201 Krumpendorf		9201 Krumpendorf	
Tel.:		Tel.:	
Norm-Außentemperatur:	-13 °C	Standort: Krumpendorf	
Berechnungs-Raumtemperatur:	22 °C	Brutto-Rauminhalt der	
Temperatur-Differenz:	35 K	beheizten Gebäudeteile:	1.808,02 m³
		Gebäudehüllfläche:	1.129,22 m ²

Bauteile AW01 Außenwand	Fläche A [m²] 283,07	Wärmed koeffizient U [W/m² K]	Korr faktor f [1] 1,00	Leitwert [W/K]
	•	1,550	1,00	438,76
	196,29	0,887	,	174,03
3	151,12	0,183	1,00	27,58
FD01 Flachdach Zubau, Wärmestrom nach oben FE/TÜ Fenster u. Türen	40,00	1,550	1,00	62,00
EB01 erdanliegender Fußboden Zubau (<=1,5m unter Erdreich)	96,75 141,20	1,410 1,089	0,70	136,46 107,63
KD01 Decke zu Keller	155,60	0,880	0,70	95,87
KD02 Decke zu Keller Zubau	48,43	0,909	0,70	30,81
IW01 Wand zu Garage Zubau	16,75	0,821	0,90	12,38
ZD02 Decke zu getrennter Wohneinheiten 1/2 Stärke	155,60	0,886		
Summe OBEN-Bauteile	191,12			
Summe UNTEN-Bauteile	345,23			
Summe Zwischendecken	155,60			
Summe Außenwandflächen	479,37			
Summe Innenwandflächen	16,75			
Fensteranteil in Außenwänden 16,8 %	96,75			
Summe			[W/K]	1.086
Wärmebrücken (vereinfacht)			[W/K]	109
Transmissions - Leitwert			[W/K]	1.194,08
Lüftungs - Leitwert			[W/K]	407,31
	Luftwechsel =	· 1 15 1/b		·
Gebäude-Heizlast Abschätzung	Luitwechsel -	1,10 1/11	[kW]	56,0
Flächenbez. Heizlast Abschätzung (501	m²)	[W/	m² BGF]	111,91

Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers. Für die Dimensionierung ist eine Heizlast-Berechnung gemäß ÖNORM H 7500 erforderlich.

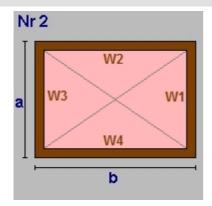
Dem Lüftungsleitwert liegt eine Nutzung von 24 Stunden mal 365 Tage zugrunde. Die erforderliche Leistung für die Warmwasserbereitung ist unberücksichtigt.

Bauteile Kindergarten - Gemeinde Krumpendorf

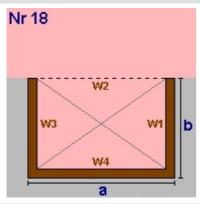
AW01 Außenwand					
bestehend	von Innen nach	Außen	Dicke	λ	d/λ
fiktiver Bestandsaufbau (U-Wert = 1,550)	В		0,3500	0,737	0,475
	Rse+Rsi = 0,17	Dicke gesamt	0,3500	U-Wert	1,55
AW02 Außenwand Zubau bestehend	von Innen nach	Außen	Dicke	λ	d/λ
KalkzementPutz KZP 65	В	710.0011	0,0150	0,830	0,018
Heraklith-BM	В		0,0350	0,090	0,389
Hochlochziegelmauer 25 cm	В		0,2500	0,480	0,521
KalkzementPutz KZP 65	В		0,0250	0,830	0,030
	Rse+Rsi = 0,17	Dicke gesamt	0,3250	U-Wert	0,89
IW01 Wand zu Garage Zubau bestehend	von Innen nach	Außen	Dicke	λ	d/λ
KalkzementPutz KZP 65	В		0,0150	0,830	0,018
Heraklith-BM	В		0,0350	0,090	0,389
Hochlochziegelmauer 25 cm	В		0,2500	0,480	0,521
KalkzementPutz KZP 65	В		0,0250	0,830	0,030
	Rse+Rsi = 0,26	Dicke gesamt	0,3250	U-Wert	0,82
KD01 Decke zu Keller bestehend	von Innen nach	Außen	Dicke	λ	d/λ
Fertigparkett 3-Schicht	В		0,0150	0,160	0,094
Blindboden	В		0,0300	0,110	0,273
Lattung dazw.		16,7 %	0,1000	0,120	0,139
Kesselschlacke (750 kg/m³) Normalbeton mit Bewehrung 1 % (2300 kg/m³)	В 8 В	33,3 %	0,1500	0,330 2,300	0,253 0,065
KalkzementPutz KZP 65	В		0,0100	0,830	0,012
RTo 1,1496 RTu 1,1227	7 RT 1,1362	Dicke gesamt		U-Wert	0,88
Lattung: Achsabstand 0,600 Breite	0,100		+Rsi 0	,34	
KD02 Decke zu Keller Zubau			Distra	2	-1 / 2
bestehend	von Innen nach	Außen	Dicke	λ	d/λ
Fertigparkett 3-Schicht Estrichbeton	B B		0,0150 0,0500	0,160 1,480	0,094 0,034
Heraklith-BM	В		0,0500	0,090	0,556
Normalbeton mit Bewehrung 1 % (2300 kg/m³)	В		0,1500	2,300	0,065
KalkzementPutz KZP 65	В		0,0100	0,830	0,012
	Rse+Rsi = 0,34	Dicke gesamt	0,2750	U-Wert	0,91
EB01 erdanliegender Fußboden Zubau (<=1, bestehend	,5m unter Erdreich) von Innen nach	Außen	Dicke	λ	d/λ
Fertigparkett 3-Schicht	В	7.10,0011	0,0150	0,160	0,094
Estrichbeton	В		0,0500	1,480	0,034
Heraklith-BM	В		0,0500	0,090	0,556
Normalbeton mit Bewehrung 1 % (2300 kg/m³)	В		0,1500	2,300	0,065
	Rse+Rsi = 0,17	Dicke gesamt	0,2650	U-Wert	1,09

Bauteile Kindergarten - Gemeinde Krumpendorf

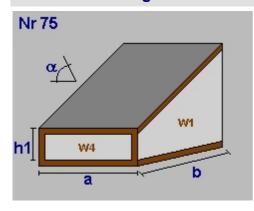
ZD01 EG/OG was	rme Zwischend	lecke		von Innon no	ach Außen	Dicke	λ	d/λ
Fertigparkett 3-Schicht				von Innen na	acii Aulseli			
Blindboden				B B		0,0150 0,0300	0,160 0,110	0,094 0,273
Lattung dazw.				В	10,0 %	0,0800	0,110	0,273
Kesselschlacke (750	ka/m³)			В	90,0 %	0,0000	0,330	0,218
Rauhschalung	J. ,			В	/ -	0,0240	0,110	0,218
Tram dazw.				В	20,0 %	0,0800	0,120	0,133
Luft steh., W-Fluss n	. oben 76 < d <	80 mm		В	80,0 %		0,500	0,128
Tram dazw.				В	20,0 %	0,1200	0,120	0,200
Kesselschlacke (750	kg/m³)			В	80,0 %	0.0040	0,330	0,291
Rauhschalung Schilfbauplatten				B B		0,0240	0,110	0,218
KalkzementPutz KZP 65	5			В		0,0050 0,0100	0,075 0,830	0,067 0,012
Naikzementi diz NZi Oc	, RTo 2,1294	PTu	2,0058	RT 2,0676	Dicko o	jesamt 0,3880	U-Wert	0,48
Lattung:	Achsabstand		Breite	0,060	DICKE (Rse+Rsi 0,		0,40
Tram:	Achsabstand		Breite	0,120		1100 - 1101 0,	,20	
Tram:	Achsabstand		Breite	0,120				
	getrennter Woh							
bestehend				von Innen na	ach Außen	Dicke	λ	d/λ
Tram dazw.				В	20,0 %	0,0700	0,120	0,117
Luft steh., W-Fluss n	. oben 116 < d <	120 mn	n	В	80,0 %		0,750	0,075
Tram dazw.				В	20,0 %	0,1200	0,120	0,200
Kesselschlacke (750	kg/m³)			В	80,0 %	0.0040	0,330	0,291
Rauhschalung				В		0,0240	0,110	0,218
Schilfbauplatten KalkzementPutz KZP 65	=			B B		0,0050 0,0100	0,075 0,830	0,067 0,012
Naikzeilleilleutz NZF 00			4 0057		-			0,012
		DTII						
Tram·	RTo 1,1719 Achsahstand		1,0857 Breite	RT 1,1288 0.120	Dicke g	pesamt 0,2290	U-Wert	0,09
Tram:	Achsabstand	0,600	Breite	0,120	Dicke g	Rse+Rsi 0,2290 Rse+Rsi 0,		0,09
Tram:	Achsabstand Achsabstand	0,600 0,600	Breite Breite	0,120 0,120	Діске ў			0,09
Tram: FD01 Flachdach	Achsabstand	0,600 0,600	Breite Breite	0,120 0,120 Den		Rse+Rsi 0,	26	·
Tram: FD01 Flachdach bestehend	Achsabstand Achsabstand Zubau, Wärme	0,600 0,600	Breite Breite	0,120 0,120 Den von Außen r		Rse+Rsi 0,	26 λ	d/λ
Tram: FD01 Flachdach	Achsabstand Achsabstand Zubau, Wärme	0,600 0,600	Breite Breite	0,120 0,120 Den von Außen r	nach Innen	Rse+Rsi 0, Dicke 0,2000	26 λ 0,396	d / λ 0,505
Tram: FD01 Flachdach bestehend fiktiver Bestandsaufbau	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550)	0,600 0,600	Breite Breite	0,120 0,120 Den von Außen r	nach Innen	Rse+Rsi 0,	26 λ	d/λ
Tram: FD01 Flachdach bestehend fiktiver Bestandsaufbau	Achsabstand Achsabstand Zubau, Wärme	0,600 0,600	Breite Breite	0,120 0,120 Den von Außen r	nach Innen Dicke g	Rse+Rsi 0, Dicke 0,2000	26 λ 0,396	d / λ 0,505
Tram: FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschrä	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550)	0,600 0,600	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14	nach Innen Dicke g	Rse+Rsi 0, Dicke 0,2000 gesamt 0,2000	λ 0,396 U-Wert	d / λ 0,505 1,55
Tram: FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschrä bestehend	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550)	0,600 0,600	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r	nach Innen Dicke g	Dicke 0,2000 pesamt 0,2000 Dicke	26 λ 0,396 U-Wert	d / λ 0,505 1,55 d / λ
Tram: FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschrä bestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet	0,600 0,600 estrom	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B * B * B *	nach Innen Dicke g	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500	λ 0,396 U-Wert λ 1,500 0,120 0,313	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117
Tram: FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschrä bestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet	0,600 0,600 estrom	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B	Dicke go nach Innen 26,7 %	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet	0,600 0,600 estrom	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B * B * B * B B	Dicke go mach Innen 26,7 % 73,3 %	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040 0,0240	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung Sparren dazw.	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet . oben 46 < d <	0,600 0,600 estrom	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B * B * B * B B	Dicke grach Innen 26,7 % 73,3 %	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120 0,120	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200 0,267
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung Sparren dazw. Steinwolle MW(SW)-	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet . oben 46 < d <	0,600 0,600 estrom	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B * B * B * B B B B	Dicke go mach Innen 26,7 % 73,3 %	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040 0,0240 0,1600	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120 0,120 0,039	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200 0,267 3,282
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung Sparren dazw. Steinwolle MW(SW)-Rauhschalung	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet . oben 46 < d < W (80 kg/m³)	0,600 0,600 estrom	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B * B * B * B B B B B B	Dicke grach Innen 26,7 % 73,3 %	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040 0,0240 0,1600 0,0240	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120 0,120 0,039 0,120	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200 0,267 3,282 0,200
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung Sparren dazw. Steinwolle MW(SW)-Rauhschalung Dampfbremse Polyethyl	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet . oben 46 < d < W (80 kg/m³)	0,600 0,600 estrom	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 Von Außen r B * B * B * B B B B B B B B	Dicke of the part	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040 0,0240 0,1600 0,0240 0,0002	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120 0,039 0,120 0,500	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200 0,267 3,282 0,200 0,000
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung Sparren dazw. Steinwolle MW(SW)-Rauhschalung Dampfbremse Polyethyl Lattung dazw.	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet . oben 46 < d < W (80 kg/m³) en (PE)	0,600 0,600 estrom 50 mm	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B * B * B B B B B B B B	Dicke go mach Innen 26,7 % 73,3 % 20,0 % 80,0 %	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040 0,0240 0,1600 0,0240	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120 0,039 0,120 0,500 0,120	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200 0,267 3,282 0,200 0,000 0,042
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung Sparren dazw. Steinwolle MW(SW)-Rauhschalung Dampfbremse Polyethyl Lattung dazw. Luft steh., W-Fluss n	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet . oben 46 < d < W (80 kg/m³) en (PE)	0,600 0,600 estrom 50 mm	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 Von Außen r B * B * B * B B B B B B B B	Dicke of the part	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,040 0,0240 0,1600 0,0240 0,0002 0,0300	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120 0,039 0,120 0,500 0,120 0,313	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200 0,267 3,282 0,200 0,000 0,042 0,080
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung Sparren dazw. Steinwolle MW(SW)-Rauhschalung Dampfbremse Polyethyl Lattung dazw.	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet . oben 46 < d < W (80 kg/m³) en (PE)	0,600 0,600 estrom 50 mm	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B * B * B B B B B B B B B B	Dicke go mach Innen 26,7 % 73,3 % 20,0 % 80,0 %	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040 0,0240 0,1600 0,0240 0,0002	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120 0,039 0,120 0,500 0,120	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200 0,267 3,282 0,200 0,000 0,042
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung Sparren dazw. Steinwolle MW(SW)-Rauhschalung Dampfbremse Polyethyl Lattung dazw. Luft steh., W-Fluss n	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet . oben 46 < d < W (80 kg/m³) en (PE)	0,600 0,600 estrom 50 mm	Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B * B * B B B B B B B B B B	Dicke grach Innen 26,7 % 73,3 % 20,0 % 80,0 % 16,7 % 83,3 %	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040 0,0240 0,1600 0,0240 0,0002 0,0300 0,2000	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120 0,039 0,120 0,500 0,120 0,313	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200 0,267 3,282 0,200 0,000 0,042 0,080
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung Sparren dazw. Steinwolle MW(SW)-Rauhschalung Dampfbremse Polyethyl Lattung dazw. Luft steh., W-Fluss n Sichtschalung Lattung:	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet . oben 46 < d < W (80 kg/m³) en (PE) . oben 46 < d < RTo 5,6682 Achsabstand	0,600 0,600 estrom 50 mm RTu 0,300	Breite Breite nach ob 5,2898 Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B * B * B B B B B B B B B B	Dicke grach Innen 26,7 % 73,3 % 20,0 % 80,0 % 16,7 % 83,3 %	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040 0,0240 0,1600 0,0240 0,0002 0,0300 0,2000 Dicke 0,4422 gesamt 0,4972	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120 0,120 0,039 0,120 0,500 0,120 0,313 0,120	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200 0,267 3,282 0,200 0,000 0,042 0,080 1,667
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung Sparren dazw. Steinwolle MW(SW)-Rauhschalung Dampfbremse Polyethyl Lattung dazw. Luft steh., W-Fluss n Sichtschalung Lattung: Sparren:	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet . oben 46 < d < W (80 kg/m³) en (PE) . oben 46 < d < RTo 5,6682 Achsabstand Achsabstand	0,600 0,600 estrom 50 mm RTu 0,300 0,600	Breite Breite nach ob 5,2898 Breite Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B * B * B B B B B B B B B B	Dicke grach Innen 26,7 % 73,3 % 20,0 % 80,0 % 16,7 % 83,3 %	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040 0,0240 0,1600 0,0240 0,0002 0,0300 0,2000 Dicke 0,4422 gesamt 0,4972	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120 0,120 0,500 0,120 0,313 0,120 U-Wert	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200 0,267 3,282 0,200 0,000 0,042 0,080 1,667
FD01 Flachdach bestehend fiktiver Bestandsaufbau DS01 Dachschräbestehend ETERNIT Dachplatten Lattung dazw. Luft steh., W-Fluss n Bitumenpappe Rauhschalung Sparren dazw. Steinwolle MW(SW)-Rauhschalung Dampfbremse Polyethyl Lattung dazw. Luft steh., W-Fluss n Sichtschalung Lattung:	Achsabstand Achsabstand Zubau, Wärme (U-Wert = 1,550) ige hinterlüftet . oben 46 < d < W (80 kg/m³) en (PE) . oben 46 < d < RTo 5,6682 Achsabstand	0,600 0,600 estrom 50 mm RTu 0,300 0,600	Breite Breite nach ob 5,2898 Breite	0,120 0,120 Den von Außen r B Rse+Rsi = 0,14 von Außen r B * B * B * B B B B B B B B B B	Dicke grach Innen 26,7 % 73,3 % 20,0 % 80,0 % 16,7 % 83,3 %	Dicke 0,2000 pesamt 0,2000 Dicke 0,0050 0,0500 0,0040 0,0240 0,1600 0,0240 0,0002 0,0300 0,2000 Dicke 0,4422 gesamt 0,4972	λ 0,396 U-Wert λ 1,500 0,120 0,313 0,230 0,120 0,120 0,500 0,120 0,313 0,120 U-Wert	d / λ 0,505 1,55 d / λ 0,003 0,111 0,117 0,017 0,200 0,267 3,282 0,200 0,000 0,042 0,080 1,667


Bauteile Kindergarten - Gemeinde Krumpendorf

Einheiten: Dicke [m], Achsabstand [m], Breite [m], U-Wert [W/m²K], Dichte [kg/m³], λ [W/mK] *... Schicht zählt nicht zum U-Wert F... enthält Flächenheizung B... Bestandsschicht RTu ... unterer Grenzwert RTo ... oberer Grenzwert laut ÖNORM EN ISO 6946


Geometrieausdruck Kindergarten - Gemeinde Krumpendorf

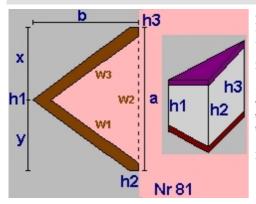
EG Grundform


```
Von EG bis OG1
a = 11,77 b = 13,22 lichte Raumhöhe = 3,07 + obere Decke: 0,39 => 3,46m
           155,60m<sup>2</sup> BRI
                                538,06m<sup>3</sup>
             40,70m² AW01 Außenwand
Wand W1
            45,71m<sup>2</sup> AW01
Wand W2
            40,70m<sup>2</sup> AW01
Wand W3
            45,71m<sup>2</sup> AW01
Wand W4
Decke
           155,60m² ZD01 EG/OG warme Zwischendecke
           155,60m² KD01 Decke zu Keller
Boden
```

EG VS Übergang

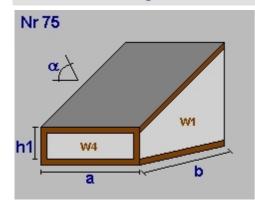

```
a = 5,90
                  b = 6,78
lichte Raumhöhe = 2,50 + \text{obere Decke: } 0,20 \Rightarrow 2,70\text{m}
             40,00m² BRI
                                 108,01m<sup>3</sup>
             18,31m<sup>2</sup> AW02 Außenwand Zubau
Wand W1
            -15,93m<sup>2</sup> AW01 Außenwand
18,31m<sup>2</sup> AW02 Außenwand Zubau
Wand W2
Wand W3
             15,93m<sup>2</sup> AW02
Wand W4
Decke
             40,00m² FD01 Flachdach Zubau, Wärmestrom nach oben
             40,00 \text{m}^2 EB01 erdanliegender Fußboden Zubau (<=1,5m
Boden
```

EG VS Süd Tagesraum I




```
Dachneigung a(°) 8,00
a = 14,74
               b =
                      9,85
h1 = 3.05
lichte Raumhöhe = 3,99 + obere Decke: 0,45 => 4,43m
          145,19m² BRI
                         543,32m³
Dachfl.
        146,62m²
Wand W1
           36,86m<sup>2</sup> AW02 Außenwand Zubau
Wand W2
           65,36m<sup>2</sup> AW02
           21,61m<sup>2</sup> AW02
Wand W3
          Teilung 5,65 x 2,70 (Länge x Höhe)
           15,26m<sup>2</sup> IW01 Wand zu Garage Zubau
           44,96m<sup>2</sup> AW02
Wand W4
          146,62m² DS01 Dachschräge hinterlüftet
Dach
Boden
           99,19m² EB01 erdanliegender Fußboden Zubau (<=1,5m
           46,00m<sup>2</sup> KD02
Teilung
```

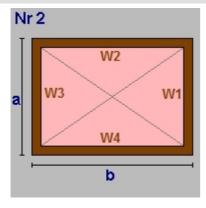

Geometrieausdruck Kindergarten - Gemeinde Krumpendorf


EG VS Süd Tagesraum II


```
b = 10,35
a = 0,47
h1=4,96 h2=2,98 h3=2,98 x=0,01 y=0,46 lichte Raumhöhe = 4,96 + obere Decke: 0,44 => 5,40m
             2,43m² BRI
                                 8,85m³
Dachfl.
             2,48m²
            41,13m<sup>2</sup> AW02 Außenwand Zubau
Wand W1
            1,40m² AW02
Wand W2
Wand W3
           -41,09m<sup>2</sup> AW02
             2,48m² DS01 Dachschräge hinterlüftet
Dach
Boden
             2,43m² KD02 Decke zu Keller Zubau
```

Dachneigung a(°) 8,00

EG VS Süd Tagesraum III




```
a = 4,01
                 b = 0,50
h1= 2,98
lichte Raumhöhe = 2,60 + \text{obere Decke: } 0,45 \Rightarrow 3,05m
              2,01m<sup>2</sup> BRI 6,05m<sup>3</sup>
Dachfl.
             2,02m²
Wand W1
             1,51m<sup>2</sup> AW02 Außenwand Zubau
            12,23m<sup>2</sup> AW02
1,51m<sup>2</sup> AW02
Wand W2
Wand W3
Wand W4
           -11,95m<sup>2</sup> AW02
              2,02m² DS01 Dachschräge hinterlüftet
Dach
Boden
              2,01m² EB01 erdanliegender Fußboden Zubau (<=1,5m
```

EG Summe

EG Bruttogrundfläche [m²]: 345,23 EG Bruttorauminhalt [m³]: 1.204,29

OG1 Grundform


```
Von EG bis OG1
a = 11,77
              b = 13,22
lichte Raumhöhe = 3,02 + \text{obere Decke: } 0,23 \Rightarrow 3,25m
         155,60m² BRI
BGF
                           505,54m³
           38,24m² AW01 Außenwand
Wand W1
           42,95m<sup>2</sup> AW01
Wand W2
           38,24m² AW01
Wand W3
Wand W4
           42,95m<sup>2</sup> AW01
          155,60m² ZD02 Decke zu getrennter Wohneinheiten 1/2
Decke
        -155,60m² ZD01 EG/OG warme Zwischendecke
Boden
```

OG1 Summe

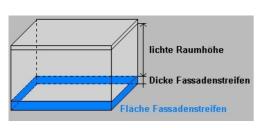
OG1 Bruttogrundfläche [m²]: 155,60 OG1 Bruttorauminhalt [m³]: 505,54

Deckenvolumen KD01

Fläche 155,60 m² x Dicke 0,31 m = 47,46 m³

Deckenvolumen EB01

Fläche 141,20 m² x Dicke 0,27 m = $37,42 \text{ m}^3$


Geometrieausdruck Kindergarten - Gemeinde Krumpendorf

Deckenvolumen KD02

Fläche $48,43 \text{ m}^2 \times \text{Dicke } 0,28 \text{ m} = 13,32 \text{ m}^3$

Bruttorauminhalt [m³]: 98,19

Fassadenstreifen - Automatische Ermittlung

Wand		Boden	Dicke	Länge	Fläche
AW01	_	KD01	0,305m	49,98m	15,24m²
AW01	_	EB01	0,265m	-5,90m	-1,56m²
AW02	-	EB01	0,265m	63,99m	16,96m²
AW02	-	KD02	0,275m	0,48m	0,13m²
TWO1	_	EB01	0.265m	5,65m	1.50m ²

Gesamtsumme Bruttogeschoßfläche [m²]: 500,83 Gesamtsumme Bruttorauminhalt [m³]: 1.808,02

Fenster und Türen Kindergarten - Gemeinde Krumpendorf

Тур		Bautell	Anz	. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs gto	ot amso
В		Prüfnor	mma	ß Typ 1 (T1)	1,23	1,48	1,82	1,10	1,30	0,060	1,32	1,31		0,62		
	•				•						1,32					
N B T1	EG	AW01	1	AF 211/150	2,11	1,50	3,17	1,10	1,30	0,060	2,22	1,37	4,34	0,62	0,50 1,0	0.0
B T1	EG	AW01		AF 211/55 OL	2,11	0,55	1,16	1,10	1,30	0,060	0,60	1,48	1,72	0,62	0,50 1,0	
B T1	EG	AW01		AF 257/150	2,57	1,50	3,86	1,10	1,30	0,060	2,69	1,39	5,35	0,62	0,50 1,0	
B T1	EG	AW01		AF 257/55 OL	2,57	0.55	1,41	1,10	1,30	0,060	0,72	1,49	2,11	0,62	0,50 1,0	
B T1	EG	AW01		AF 212/150	2,12	1,50	3,18	1,10	1,30	0,060	2,24	1,37	4,36	0,62	0,50 1,0	
B T1	EG	AW01		AF 212/55 OL	2,12	0,55	1,17	1,10	1,30	0,060	0,60	1,48	1,73	0,62	0,50 1,0	
B T1	EG	AW02		AF 100/60	1,00	0,60	1,20	1,10	1,30	0,060	0,64	1,43	1,72	0,62	0,50 1,0	
B T1	EG	AW02		AF 201/60	2,01	0,60	4,82	1,10	1,30	0,060	2,90	1,40	6,75	0,62	0,50 1,0	
B T1	OG1	AW01		AF 104/150	1,04	1,50	3,12	1,10	1,30	0,060	1,92	1,43	4,47	0,62	0,50 1,0	
B T1	OG1	AW01		AF 104/55 OL	1,04	0,55	1,14	1,10	1,30	0,060	0,52	1,51	1,73	0,62	0,50 1,0	
B T1	OG1	AW01		AF 132/150	1,32	1,50	1,98	1,10	1,30	0,060	1,33	1,39	2,74	0,62	0,50 1,0	
B T1		AW01		AF 132/55 OL	1,32	0,55	0,73	1,10	1,30	0,060	0,36	1,49	1,08	0,62	0,50 1,0	,
			18		1,,,,	-,	26,94	-,,,,	-,		16,74		38,10	-,		
0							0,0 :				,		00,10			
В	EG	AW01	1	AT 154/210	1,54	2,10	3,23				0,97	1,67	5,40	0,61	0,50 1,0	0,0
B T1	EG	AW01	1	AF 111/150	1,11	1,50	1,67	1,10	1,30	0,060	1,05	1,42	2,36	0,62	0,50 1,0	
B T1	EG	AW01		AF 111/55 OL	1,11	0,55	0,61	1,10	1,30	0,060	0,28	1,50	0,92	0,62	0,50 1,0	
B T1	EG	AW01	1	AF 105/150	1,05	1,50	1,58	1,10	1,30	0,060	0,98	1,43	2,25	0,62	0,50 1,0	
B T1	EG	AW01	1		1,05	0,55	0,58	1,10	1,30	0,060	0,26	1,51	0,87	0,62	0,50 1,0	
B T1	EG	AW01	1	AF 154/90 OL	1,54	0,90	1,39	1,10	1,30	0,060	0,81	1,57	2,17	0,62	0,50 1,0	
В	EG	AW02	1	AT 201/250	2,01	2,50	5,03				3,52	1,67	8,39	0,61	0,50 1,0	
B T1	EG	AW02	1	AF 314/50	3,14	0,50	1,57	1,10	1,30	0,060	0,85	1,45	2,28	0,62	0,50 1,0	
B T1	EG	AW02	1	AF 201/250	2,01	2,50	5,03	1,10	1,30	0,060	3,93	1,29	6,50	0,62	0,50 1,0	0,0
B T1	EG	AW02	1	AF 88/250	0,88	2,50	2,20	1,10	1,30	0,060	1,56	1,32	2,90	0,62	0,50 1,0	0,0
B T1	EG	AW02	1	AF 37/248	0,37	2,48	0,92	1,10	1,30	0,060	0,39	1,54	1,41	0,62	0,50 1,0	0,0
B T1	OG1	AW01	2	AF 104/150	1,04	1,50	3,12	1,10	1,30	0,060	1,92	1,43	4,47	0,62	0,50 1,0	0,0
B T1	OG1	AW01	2	AF 104/55 OL	1,04	0,55	1,14	1,10	1,30	0,060	0,52	1,51	1,73	0,62	0,50 1,0	0,0
B T1	OG1	AW01	1	AF 103/150	1,03	1,50	1,55	1,10	1,30	0,060	0,95	1,44	2,22	0,62	0,50 1,0	0,0
B T1	OG1	AW01	1	AF 103/55 OL	1,03	0,55	0,57	1,10	1,30	0,060	0,26	1,51	0,86	0,62	0,50 1,0	0,0
			17				30,19				18,25		44,73			
S																
B T1	EG	AW02	1	AF 417/171	4,17	1,71	7,13	1,10	1,30	0,060	5,54	1,31	9,33	0,62	0,50 1,0)0 0,0
B T1	EG	AW02		AF 116/171	1,16	1,71	1,98	1,10	1,30	0,060	1,45	1,30	2,59	0,62	0,50 1,0	
B T1	EG	AW02	1	AF 186/248	1,86	2,48	4,61	1,10	1,30	0,060	3,56	1,30	6,02		0,50 1,0	
B T1	EG	AW02		AF 84/171	0,84	1,71	1,44	1,10	1,30	0,060	0,97	1,35	1,93		0,50 1,0	
B T1	EG	AW02	1	AF 192/248	1,92	2,48	4,76	1,10	1,30	0,060	3,69	1,30	6,19	0,62	0,50 1,0	
B T1	EG	AW02	1	AF 361/171	3,61	1,71	6,17	1,10	1,30	0,060	4,85	1,29	7,98	0,62	0,50 1,0	0,0
B T1	OG1	AW01	2	AF 49/203	0,49	2,03	1,99	1,10	1,30	0,060	1,00	1,48	2,94	0,62	0,50 1,0	
B T1	OG1	AW01	1	AF 112/210	1,12	2,10	2,35	1,10	1,30	0,060	1,56	1,40	3,30	0,62	0,50 1,0	
B T1	OG1			AF 112/83 OL	1,12	0,83	0,93	1,10	1,30	0,060	0,43	1,56	1,45	0,62	0,50 1,0	
	<u>I</u>		10		1 '	•	31,36	•	•	•	23,05	•	41,73			
							,••				.,		, . •			

Fenster und Türen Kindergarten - Gemeinde Krumpendorf

Тур		Bauteil	Anz	. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs	gtot	amsc
B T1	EG	AW01	1	AF 116/150	1,16	1,50	1,74	1,10	1,30	0,060	1,12	1,41	2,45	0,62	0,50	1,00	0,00
B T1	EG	AW01	1	AF 116/55 OL	1,16	0,55	0,64	1,10	1,30	0,060	0,30	1,50	0,96	0,62	0,50	1,00	0,00
B T1	EG	AW01	1	AF 105/155	1,05	1,55	1,63	1,10	1,30	0,060	1,01	1,43	2,33	0,62	0,50	1,00	0,00
B T1	OG1	AW01	1	AF 104/150	1,04	1,50	1,56	1,10	1,30	0,060	0,96	1,43	2,24	0,62	0,50	1,00	0,00
B T1	OG1	AW01	1	AF 104/55 OL	1,04	0,55	0,57	1,10	1,30	0,060	0,26	1,51	0,86	0,62	0,50	1,00	0,00
B T1	OG1	AW01	1	AF 105/150	1,05	1,50	1,58	1,10	1,30	0,060	0,98	1,43	2,25	0,62	0,50	1,00	0,00
B T1	OG1	AW01	1	AF 105/55 OL	1,05	0,55	0,58	1,10	1,30	0,060	0,26	1,51	0,87	0,62	0,50	1,00	0,00
			7		•		8,30				4,89		11,96				
Summe)		52				96,79				62,93		136,52				

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche

B... Fenster gehört zum Bestand des Gebäudes amsc... Param. zur Bewert. der Aktivierung von Sonnenschutzeinricht. Sommer

g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor

Typ... Prüfnormmaßtyp

gtot ... Gesamtenergiedurchlassgrad der Verglasung inkl. Abschlüsse

Rahmen Kindergarten - Gemeinde Krumpendorf

Bezeichnung	Rb.re.	Rb.li. m	Rb.o.	Rb.u.	%	Stulp Anz.	Stb. P		Pfb.		V-Sp. Anz.	Spb.	
Typ 1 (T1)	0,100	0,100	0,100	0,100	28	AHZ.	- III <i>P</i>	uıZ.	111	AIIZ.	AIIZ.		Kunststoff-Rahmen < 71
AF 211/150	0,100	0,100	0,100	0,100	30	2	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 211/55 OL	0,100	0,100	0,100	0,100	48	2	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 257/150	0,100	0,100	0,100	0,100	30	3	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 257/55 OL	0,100	0,100	0,100	0,100	49	3	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 212/150	0,100	0,100	0,100	0,100	30	2	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 212/55 OL	0,100	0,100	0,100	0,100	48	2	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 111/150	0,100	0,100	0,100	0,100	37	1	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 111/55 OL	0,100	0,100	0,100	0,100	54	1	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 105/150	0,100	0,100	0,100	0,100	38	1	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 105/55 OL	0,100	0,100	0,100	0,100	55	1	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 154/90 OL	0,100	0,100	0,100	0,100	42	2	0,050			1		0,050	
AF 116/150	0,100	0,100	0,100	0,100	36		0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 116/55 OL	0,100	0,100	0,100	0,100	53		0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 105/155	0,100	0.100	0,100	0,100	38		0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 314/50	0,100	0,100	0,100	0,100	46		0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 201/250	0,100	0,100	0,100	0,100	22		0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 88/250	0,100	0,100	0,100	0,100	29		0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 100/60	0,100	0,100	0,100	0,100	47								Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 417/171	0,100	0,100	0,100	0,100	22	3	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 116/171	0,100	•		•	27	3	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
	'	0,100 0.100	0,100	0,100		1	0.400						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 186/248	0,100	-,	0,100	0,100	23	1	0,100						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 400/040	0,100	0,100	0,100	0,100	33		0.400						Stockrahmentiefe < 88 Kunststoff-Rahmen < 71
AF 192/248	0,100	0,100	0,100	0,100	22	1	0,100						Stockrahmentiefe < 88
AF 361/171	0,100	0,100	0,100	0,100	21	2	0,100						Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 37/248	0,100	0,100	0,100	0,100	58								Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 201/60	0,100	0,100	0,100	0,100	40								Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 104/150	0,100	0,100	0,100	0,100	38		0,100						Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 104/55 OL	0,100	0,100	0,100	0,100	55	1	0,100						Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 132/150	0,100	0,100	0,100	0,100	33	1	0,100						Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 132/55 OL	0,100	0,100	0,100	0,100	51	1	0,100						Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 103/150	0,100	0,100	0,100	0,100	39	1	0,100						Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 103/55 OL	0,100	0,100	0,100	0,100	55	1	0,100						Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 49/203	0,100	0,100	0,100	0,100	50					1		0,100	Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 112/210	0,100	0,100	0,100	0,100	34	1	0,100						Kunststoff-Rahmen < 71 Stockrahmentiefe < 88

Rahmen Kindergarten - Gemeinde Krumpendorf

Bezeichnung	Rb.re.	Rb.li. m	Rb.o. m	Rb.u. m	%	Stulp Anz.		Pfost Anz.	Pfb. m	H-Sp. Anz.	 Spb. m	
AF 112/83 OL	0,100	0,100	0,100	0,100	53	1	0,100			1	0,100	Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 105/150	0,100	0,100	0,100	0,100	38	1	0,100					Kunststoff-Rahmen < 71 Stockrahmentiefe < 88
AF 105/55 OL	0,100	0,100	0,100	0,100	55	1	0,100					Kunststoff-Rahmen < 71 Stockrahmentiefe < 88

Rb.li,re,o,u Rahmenbreite links,rechts,oben, unten [m]

H-Sp. Anz Anzahl der horizontalen Sprossen V-Sp. Anz Anzahl der vertikalen Sprossen Stb. Stulpbreite [m] Pfb. Pfostenbreite [m] Typ Prüfnormmaßtyp

% Rahmenanteil des gesamten Fensters

Spb. Sprossenbreite [m]

Kühlbedarf Standort Kindergarten - Gemeinde Krumpendorf

Kühlbedarf Standort (Krumpendorf)

BGF 500,83 m 2 L T 1.194,08 W/K Innentemperatur 26 °C fcorr 1,40

BRI 1.808,02 m³

Gesamt	365		175.600	22.050	197.650	23.098	24.202	47.300		0
Dezember	31	-1,40	24.338	3.080	27.417	1.967	857	2.824	1,00	0
November	30	3,42	19.415	2.428	21.844	1.894	1.123	3.018	1,00	0
Oktober	31	9,72	14.466	1.831	16.297	1.967	1.763	3.731	1,00	0
September	30	15,35	9.159	1.146	10.305	1.894	2.357	4.251	0,97	0
August	31	18,97	6.247	790	7.037	1.967	2.667	4.635	0,91	0
Juli	31	19,79	5.516	698	6.214	1.967	2.810	4.778	0,87	0
Juni	30	17,87	6.986	874	7.860	1.894	2.617	4.512	0,93	0
Mai	31	14,13	10.543	1.334	11.878	1.967	2.663	4.630	0,98	0
April	30	9,72	13.994	1.750	15.744	1.894	2.319	4.214	0,99	0
März	31	4,88	18.762	2.374	21.136	1.967	2.237	4.205	1,00	0
Februar	28	0,16	20.735	2.526	23.261	1.748	1.687	3.436	1,00	0
Jänner	31	-2,63	25.439	3.219	28.658	1.967	1.101	3.068	1,00	0
		temperaturen °C	verluste kWh	verluste kWh	kWh	kWh	kWh	kWh		kWh
Monate	Tage	Mittlere Außen-	Transm wärme-	Lüftungs- wärme-	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Ausnut- zungsgrad	Kühl- bedarf

 $KB = 0,00 \text{ kWh/m}^2\text{a}$

Außen induzierter Kühlbedarf Referenzklima Kindergarten - Gemeinde Krumpendorf

Außen induzierter Kühlbedarf Referenzklima

BGF 500,83 m 2 L T 1.194,08 W/K Innentemperatur 26 °C fcorr 1,40

BRI 1.808,02 m³

Gesamt	365		153.053	6.810	159.862	0	22.354	22.354		0
Dezember	31	2,19	21.153	941	22.094	0	707	707	1,00	0
November	30	6,16	17.057	759	17.816	0	903	903	1,00	0
Oktober	31	11,64	12.757	568	13.325	0	1.622	1.622	1,00	0
September	30	17,03	7.712	343	8.055	0	2.123	2.123	0,99	0
August	31	20,56	4.833	215	5.048	0	2.536	2.536	0,96	0
Juli	31	21,12	4.335	193	4.528	0	2.751	2.751	0,93	0
Juni	30	19,33	5.734	255	5.990	0	2.634	2.634	0,97	0
Mai	31	16,20	8.706	387	9.094	0	2.729	2.729	0,99	0
April	30	11,62	12.363	550	12.913	0	2.211	2.211	1,00	0
März	31	6,81	17.048	759	17.807	0	1.911	1.911	1,00	0
Februar	28	2,73	18.672	831	19.503	0	1.360	1.360	1,00	0
Jänner	31	0,47	22.681	1.009	23.690	0	868	868	1,00	0
		temperaturen °C	verluste kWh	verluste kWh	kWh	kWh	kWh	kWh		kWh
Monate	Tage	Mittlere Außen-	Transm wärme-	Lüftungs- wärme-	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Ausnut- zungsgrad	Kühl- bedarf

 $KB* = 0,00 \text{ kWh/m}^3\text{a}$

RH-Eingabe

Kindergarten - Gemeinde Krumpendorf

Raumheizung

Allgemeine Daten

Wärmebereitstellung gebäudezentral

<u>Abgabe</u>

Haupt Wärmeabgabe Radiatoren, Einzelraumheizer

Systemtemperatur 70°/55°

Regelfähigkeit Einzelraumregelung mit Thermostatventilen

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Verteilung</u>				Leitungslänge	en It. Defaultwerten
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Dämmung Armaturen	Leitungslänge [m]	konditioniert [%]
Verteilleitungen	Ja	1/3	Nein	26,73	100
Steigleitungen	Ja	1/3	Nein	40,07	100
Anbindeleitunge	n Ja	1/3	Nein	280,46	

Speicher kein Wärmespeicher vorhanden

Bereitstellung

Bereitstellungssystem Nah-/Fernwärme

Energieträger Fernwärme aus Heizwerk (erneuerbar)

Betriebsweise gleitender Betrieb

Hilfsenergie - elektrische Leistung

Umwälzpumpe 74,45 W Defaultwert

^{*)} Wert pro Wärmebereitstellungseinheit (Wohnung bzw. Nutzungseinheit)

WWB-Eingabe Kindergarten - Gemeinde Krumpendorf

Warmwasserbereitung

Allgemeine Daten

Wärmebereitstellung dezentral Anzahl Einheiten 4,0 Defaultwert

getrennt von Raumheizung

<u>Abgabe</u>

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Wärmeverteilung ohne Zirkulation Leitungslängen lt. Defaultwerten

gedämmt Verhältnis Leitungslänge

Dämmstoffdicke zu [m] Rohrdurchmesser

Verteilleitungen0,00Steigleitungen0,00

Stichleitungen* 6,00 Material Stahl 2,42 W/m

Speicher

Art des Speichers direkt elektrisch beheizter Speicher

Standort konditionierter Bereich

Baujahr Ab 1994

Nennvolumen* 150 I Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher* $q_{b,WS} = 1,34 \text{ kWh/d}$ Defaultwert

Bereitstellung

Bereitstellungssystem Stromheizung direkt

^{*)} Wert pro Wärmebereitstellungseinheit (Wohnung bzw. Nutzungseinheit)

Beleuchtung Kindergarten - Gemeinde Krumpendorf "Bestand 2025; KG 72133 Krumpendorf; Parzelle .35/1"

Beleuchtung

gemäß ÖNORM H 5059-1:2019-01-15

Berechnung: Defaultwert

Beleuchtungsenergiebedarf BelEB 19,84 kWh/m²a

Energiekennzahlen für die Anzeige in Druckwerken und elektronischen Medien

Energieausweis-Vorlage-Gesetz 2012 - EAVG 2012

Kindergarten - Gemeinde Krumpendorf "Bestand 2025; KG 72133 Krumpendorf; Parzelle .35/1" Bezeichnung

Gebäudeteil EG + OG

Nutzungsprofil Bildungseinrichtungen 1930 Bauiahr

Bad Stich Straße Nord 15 Katastralgemeinde Straße Krumpendorf

PLZ/Ort 9201 Krumpendorf KG-Nr. 72133 Grundstücksnr. .35/1 Seehöhe 450 m

Energiekennzahlen It. Energieausweis

f_{GEE,SK} 2,44 HWB_{Ref,SK} 247

Energieausweis Ausstellungsdatum 02.07.2025 Gültigkeitsdatum 01.07.2035

f GEE

Der Energieausweis besteht aus - den ersten zwei Seiten (im Falle von Sonstigen konditionierten Gebäuden auch aus mehr Seiten, denn ab der 3. Seite strukturierte Auflistung der U-Werte) gemäß dem im Anhang dieser Richtlinie festgelegten Layout und

- einem technischen Anhang

HWB Ref Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer

normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem

Referenz-Endenergiebedarf (Anforderung 2007).

SK Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der

Vorfassung aktualisiert.

EAVG §3 Wird ein Gebäude oder ein Nutzungsobjekt in einem Druckwerk oder einem elektronischen Medium zum Kauf oder zur In-Bestand-Nahme angeboten, so sind in der Anzeige der Heizwärmebedarf und der Gesamtenergieeffizienz-Faktor des Gebäudes oder des Nutzungsobjekts anzugeben. Diese Pflicht gilt sowohl für den Verkäufer oder Bestandgeber als auch

für den von diesem beauftragten Immobilienmakler.

EAVG §4 (1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Käufer, bei der In-Bestand-Gabe eines Gebäudes der Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers einen zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopie desselben binnen 14 Tagen nach Vertragsabschluss auszuhändigen.

Wird dem Käufer oder Bestandnehmer vor Abgabe seiner Vertragserklärung ein Energieausweis vorgelegt, so gilt die darin EAVG §6 angegebene Gesamtenergieeffizienz des Gebäudes als bedungene Eigenschaft im Sinn des § 922 Abs. 1 ABGB.

(1) Wird dem Käufer oder Bestandnehmer entgegen § 4 nicht bis spätestens zur Abgabe seiner Vertragserklärung ein EAVG §7 Energieausweis vorgelegt, so gilt zumindest eine dem Alter und der Art des Gebäudes entsprechende Gesamtenergieeffizienz als vereinbart.

(2) Wird dem Käufer oder Bestandnehmer entgegen § 4 nach Vertragsabschluss kein Energieausweis ausgehändigt, so kann er entweder sein Recht auf Ausweisaushändigung gerichtlich geltend machen oder selbst einen Energieausweis einholen und die ihm daraus entstandenen Kosten vom Verkäufer oder Bestandgeber ersetzt begehren.

Vereinbarungen, die die Vorlage- und Aushändigungspflicht nach § 4, die Rechtsfolge der Ausweisvorlage nach § 6, die EAVG §8 Rechtsfolge unterlassener Vorlage nach § 7 Abs. 1 einschließlich des sich daraus ergebenden Gewährleistungsanspruchs oder die Rechtsfolge unterlassener Aushändigung nach § 7 Abs. 2 ausschließen oder einschränken, sind unwirksam.

(1) Ein Verkäufer, Bestandgeber oder Immobilienmakler, der es entgegen § 3 unterlässt, in der Verkaufs- oder In-Bestand-EAVG §9 Gabe-Anzeige den Heizwärmebedarf und den Gesamtenergieeffizienz-Faktor des Gebäudes oder des Nutzungsobjekts anzugeben, begeht, sofern die Tat nicht den Tatbestand einer gerichtlich strafbaren Handlung erfüllt oder nach anderen Verwaltungsstrafbestimmungen mit strengerer Strafe bedroht ist, eine Verwaltungsübertretung und ist mit einer Geldstrafe bis zu 1 450 Euro zu bestrafen. Der Verstoß eines Immobilienmaklers gegen § 3 ist entschuldigt, wenn er seinen Auftraggeber über die Informationspflicht nach dieser Bestimmung aufgeklärt und ihn zur Bekanntgabe der beiden Werte beziehungsweise zur Einholung eines Energieausweises aufgefordert hat, der Auftraggeber dieser Aufforderung jedoch nicht nachgekommen ist.

(2) Ein Verkäufer oder Bestandgeber, der es entgegen § 4 unterlässt,

1. dem Käufer oder Bestandnehmer rechtzeitig einen höchstens zehn Jahre alten Energieausweis

2. dem Käufer oder Bestandnehmer nach Vertragsabschluss einen Energieausweis oder eine vollständige Kopie desselben auszuhändigen, begeht, sofern die Tat nicht den Tatbestand einer gerichtlich strafbaren Handlung erfüllt oder nach anderen Verwaltungsstrafbestimmungen mit strengerer Strafe bedroht ist, eine Verwaltungsübertretung und ist mit einer Geldstrafe bis zu 1450 Euro zu bestrafen.

Vorlagebestätigung

Energieausweis-Vorlage-Gesetz 2012 – EAVG 2012

Bezeichnung Kindergarten - Gemeinde Krumpendorf "Bestand 2025; KG 72133 Krumpendorf; Parzelle .35/1"

Gebäudeteil EG + OG

Nutzungsprofil Bildungseinrichtungen Baujahr 1930

Straße Bad Stich Straße Nord 15 Katastralgemeinde Krumpendorf

PLZ/Ort 9201 Krumpendorf KG-Nr. 72133 Grundstücksnr. .35/1 Seehöhe 450 m

Energiekennzahlen It. Energieausweis

HWB_{Ref,SK} 247 f_{GEE,SK} 2,44

Der Energieausweis besteht aus - den ersten zwei Seiten (im Falle von Sonstigen konditionierten Gebäuden auch aus mehr

Seiten, denn ab der 3. Seite strukturierte Auflistung der U-Werte) gemäß dem im Anhang dieser

Richtlinie festgelegten Layout und - einem technischen Anhang

Der Vorle	gende bestätigt, dass der Energieausweis vorgelegt	wurde.		
Ort, Datum	<u> </u>			
Name Vorl	egender	Unterschrift Vorlegender		
Der Intere	ssent bestätigt, dass ihm der Energieausweis vorge	elegt wurde.		
Ort, Datum				
Name Inte	ressent	Unterschrift Interessent		
HWB _{Ref}		e, die in den Räumen bereitgestellt werden muss, um diese auf einer sichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.		
f _{GEE}	Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem Referenz-Endenergiebedarf (Anforderung 2007).			
SK	Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.			
EAVG §4	G§4 (1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Käufer, bei der In-Bestand-Gabe eines Gebäudes der Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers ein zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopi desselben binnen 14 Tagen nach Vertragsabschluss auszuhändigen.			

Aushändigungsbestätigung

Energieausweis-Vorlage-Gesetz 2012 – EAVG 2012

Bezeichnung Kindergarten - Gemeinde Krumpendorf "Bestand 2025; KG 72133 Krumpendorf; Parzelle .35/1"

Gebäudeteil EG + OG

Nutzungsprofil Bildungseinrichtungen Baujahr 1930

Straße Bad Stich Straße Nord 15 Katastralgemeinde Krumpendorf

PLZ/Ort 9201 Krumpendorf KG-Nr. 72133 Grundstücksnr. .35/1 Seehöhe 450 m

Energiekennzahlen It. Energieausweis

HWB_{Ref,SK} 247 f_{GEE,SK} 2,44

- Der Energieausweis besteht aus den ersten zwei Seiten (im Falle von Sonstigen konditionierten Gebäuden auch aus mehr Seiten, denn ab der 3. Seite strukturierte Auflistung der U-Werte) gemäß dem im Anhang dieser Richtlinie festgelegten Layout und
 - einem technischen Anhang

Der Verkä	ufer/Bestandgeber bestätigt, dass der Energieausw	eis ausgehändigt wurde.					
Ort, Datum							
Name Verk	käufer/Bestandgeber	Unterschrift Verkäufer/Bestandgeber					
Der Käufe	Der Käufer/Bestandnehmer bestätigt, dass ihm der Energieausweis ausgehändigt wurde.						
Ort, Datum							
Name Käu	fer/Bestandnehmer	Unterschrift Käufer/Bestandnehmer					
HWB _{Ref}		e, die in den Räumen bereitgestellt werden muss, um diese auf einer					
f _{GEE}	normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten. Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem Referenz-Endenergiebedarf (Anforderung 2007).						
SK	Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.						
EAVG §4	(1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Käufer, bei der In-Bestand-Gabe eines Gebäudes der Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers einer zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopie desselben binnen 14 Tagen nach Vertragsabschluss auszuhändigen.						